
1

Grasp Transfer by Parts
Eli Bronstein∗ Amit Talreja∗

Abstract—Grasping is a subfield of robotics research that
focuses on enabling robots to manipulate objects. Grasping is
hard because of the large space of possible grasps that must
be considered. We sought to decrease the complexity of planning
grasps on objects by 1) breaking an object into component parts,
and 2) transferring known-good grasps to these parts from parts
of previously seen objects, with the novel consideration that
the two objects need not be from the same class. While this
system produced some successful transferred grasps, the overall
quality of transferred grasps was lower than grasps produced
by direct computation. Further information can be found at
https://sites.google.com/berkeley.edu/grasptransferbyparts/home

I. INTRODUCTION

Grasping by parts is a method of grasping that is based
on ideas from the human visual system. In (Biederman),
Biederman proposes that humans recognize objects by visually
decomposing them into component ”blocks cylinders, wedges,
and cones” and other objects, and that humans may not recog-
nize objects as a whole because there is too much variation and
it is simpler to break them into common components. Simi-
larly, grasping by parts separates an object into its components
so that grasps can be planned on the components instead of
the full objects. The theory is that some parts of an object are
more natural to grasp, such as the handle on a cup, so planning
grasps on these semantically meaningful components might
result in more successful grasps than simply planning over the
whole object and hoping a grasp is successful. These parts that
are more amenable to being grasped are called affordances,
and have been extensively explored in human factors literature,
such as (Gaver).

Grasp transfer aims to reduce the time spent computing
grasps by taking known-good grasps from one object and
warping or transforming them to apply to other, similar
objects. The hope is that this transfer process is simpler and
cheaper than computing grasps on the new object directly.

Our method combines the ideas of grasping by parts and
grasp transfer. We take a group of objects, segment them
into functional parts, and plan grasps on each part. Given a
new object we segment it and then try to find parts in the
database that are similar to the new parts. Once similar parts
are identified, we transfer the precomputed grasps to the new
parts and evaluate their efficacy.

Our method achieves varying results on different objects.
For each object some percentage of the transferred grasps are
invalid because they do not make contact with the surface
of the queried object. We find that the percentage of valid
transferred grasps varies from 21 to 70 percent depending on
the object. For the transfer grasps that are valid, we find that
their quality decreases by 0.16 in grasp quality on average.

Fig. 1: Overview of the grasp transfer by by parts process.
Given a query object, we segment it into parts using su-
perquadric decomposition trees. For a specific query part, we
find the most similar parts of other objects from a database
that contains individual parts with associated precomputed
grasps. Next, the precomputed grasps on the database parts
are transferred to the query part and processed to lie directly
on the query part’s surface.

II. RELATED WORK

A. Grasping By Parts

Prior work on grasping by parts has focused on different
ways to segment an object to find the semantically relevant
components. The central idea in all cases is to plan on a part
of the object because it reduces complexity as compared to
planning on the whole object.

(Goldfeder et. al) use a similar superquadric decomposition
tree method to ours as a way to reduce the search space for
grasping. They recognize that superquadrics are very efficient
to sample and plan grasps on, so they plan grasps at each level
of the superquadric decomposition tree (effectively on each
part) and then simulate the grasps on the actual 3D models to
see which are feasible.

(Kai et. al) believe that representing an object by shape
primitives is a fruitful avenue of research to cut down the
search space of grasps but they want to answer the question
”how rudimentary can a model of a thing be in order to
be handled succesfully and efficiently?” They use a tree
decomposition process to fit rectangular bounding boxes to
parts of objects as a tradeoff between accuracy and efficiency
of the representation.

Although a slightly older paper, (Miller et. al) is interesting
because it seems to be the precursor for a lot of the more mod-
ern grasping by parts work. The authors manually decompose
objects into their component shapes (for example, they show
a coffee cup manually modeled as a cylinder with a box for
the handle), and then manually define the ways in which each
shape primitive can be grasped.

B. Grasp Transfer

As stated earlier, grasp transfer is the idea of taking a good
grasp on one object and finding a transformation such that it
can be used as a good grasp on a similar object to avoid having

2

to go through the expensive process of planning a grasp on
the new object.

In (Hillenbrand et. al) the authors present a method for
transferring grasps between objects of the same functional
category. They achieve this by warping the source object into
the target object and then using the warp information to find
new vertices for the grasp on the target object. They then use
local grasp re-planning to make sure that the grasp is feasible
on the new object.

Unlike the previous work, (Kopicki et. al) does not explicitly
require that objects be in the same category for the grasp to
transfer. The authors describe a method that uses probability
density functions to model the finger contacts and the hand
configurations. On new objects grasps are chosen to maximise
the product of these densities, thus ”transferring” the informa-
tion learned from prior grasp situations.

C. Part-based Grasp Transfer

We also found prior work that combined the ideas of grasp
transfer and grasping by parts.

(Aleotti and Caselli, 2012) use Reeb graphs to segment
objects. A Reeb graph is a topological construct that ”tracks
the topology changes in the level-sets of [a] scalar function” on
the object. In this way it generates a canonical representation
of an object that can then have its parts annotated by per-
forming a graph matching with Reeb graphs from previously
seen objects. This is possible because the authors assume
that ”Objects to be grasped are assumed to belong to a set
of known classes of objects, where all objects of the same
class approximately share the same topology”. Grasps can then
be planned on the parts of the object that are annotated as
affordances. Although this is not strictly transfer grasping by
parts because only the labels are transferred and not the grasps,
it does involve both prior knowledge from other objects and
the idea of grasping by parts.

(Aleotti and Caselli, 2011), also by the same authors,
continues the idea of using Reeb graphs for segmentation
but uses them more explicitly for retrieval by adding the
additional step of using human-demonstrated grasps. Grasps
are demonstrated by a human in a virtual reality system, and
the Reeb graph allows for similar parts to be identified so that
grasps from the human can be transferred to new objects.

(Matl et. al) is a true method of transfer grasping by parts.
In this work a mesh segmentation algorithm is used to directly
compute components of an object from the mesh without using
an intermediate form like a Reeb Graph or superquadrics.
Once the segments are obtained they are matched to similar
segments using D2 shape descriptors and Gaussian Mixture
Models. Grasps are transferred by aligning the similar seg-
ments using a point cloud registration algorithm to recover
the homogeneous transformation between them. This work is
closest in structure to the method we implemented, replacing
the particular ways of doing segmentation, matching, and
transfer with our use of superquadrics.

(Detry et. al) presents a method of grasping by parts that
aims to learn useful part prototypes by using the shape of the
parts and the grasp examples on the provided objects. This

technique is meant to increase the generalizability of grasp
transfer by being more flexible in part selection than other
existing segmentation algorithms.

Finally, (Vahrenkamp et. al) uses mesh segmentation to get
the components of an object before planning grasps on each
part. When presented with a new object it is again segmented
and a corresponding graph from the database of prior grasps
is retrieved. The paper is extrmeley light on actual details but
the system described seems similar to that of (Matl et al.).

III. METHODS

A. Goals

The goal of this work is to use a grasping-by-parts ap-
proach to transfer precomputed grasps from a database of
object affordances to a new object. To evaluate the success
of our method, we focus on the performance of its two
main components: object segmentation and grasp transfer.
First, to assess the performance of the object segmentation
step, we qualitatively observe whether the resulting object
parts are useful affordances for grasping and how similar the
segmentation is to one performed by a human. Second, we
compare the force closure grasp qualities of the transferred
grasps with the qualities of grasps on the same object parts
computed in a standard way (i.e. by sampling many grasps
and selecting the ones with the highest quality).

B. Object Segmentation via Superquadric Decomposition
Trees

Superquadrics are a broad family of parametric shapes
including cubes, cylinders, superellipsoids, octahedra, and
spindles, among others (Solina and Bajcsy). They have been
widely used as primitive shapes in computer graphics. For
the purposes of this work, we restrict ourselves to convex su-
perellipsoids, as these are successful enough at approximating
many common objects. A superquadric is defined by a total
of 11 parameters: two shape parameters η and ω, three scale
parameters a1, a2, and a3, three Euler angles for rotation, and
and three Cartesian coordinates for translation. We refer to
these parameters as Λ.

The surface of a superquadric with zero rotation and trans-
lation is defined by the following vector (Solina and Bajcsy):

x(η, ω) =

a1sgn(cos(ω)) cosε1(η)| cos(ω)|ε2
a2sgn(sin(ω)) cosε1(η)| sin(ω)|ε2

a3sgn(sin(η))| sin(η)|ε2


where −π/2 ≤ η ≤ π/2 and −π ≤ ω ≤ π.
Parameters ε and η can be eliminated from the superquadric

parametric equation to obtain the superquadric inside-outside
function:

F (Λ, x, y, z) = ((
x

a1
)

2
ε2 + (

y

a2
)

2
ε2)

ε2
ε1 + (

z

a3
)

2
ε1

(Goldfeder et al.). F takes on negative values for points
inside of the superquadric, positive values for points outside of
the superquadric, and zero on the surface of the superquadric.

3

1) Fitting a Superquadric: The process of fitting a su-
perquadric to a set of points involves minimizing the error
between the surface of the superquadric and the locations
of the points. Simply minimizing the sum of the values of
the inside-outside function for each point does not succeed
because it does not vary linearly with the distance from a point
to the superquadric surface. Computing the exact distance
from a point to the surface of a superquadric is difficult and
computationally expensive, so various approximations have
been used for this distance.

We use an approximation similar to the one presented by
Solina and Bajcsy (Solina and Bajcsy),

G(Λ, D) =
√
a1a2a3

N∑
i=1

(F ε1(Λ, xi, yi, zi)− 1)2

where D is the point cloud of size N .The
√
a1a2a3 term

of the object function seeks to find the smallest superquadric
describing the given points, and the F ε1 − 1 terms seeks to
minimize the distance between the points and the surface of
the superquadric. Raising F to the power of ε1 is done in
order to prevent the explosion of the value of F when ε1 takes
on a small value. To fit the superquadric to a set of points,
we minimize G over the set of points. Although other works
have minimized the objective function using the Levenberg-
Marquardt method for nonlinear least squares optimization, we
had more success in using L-BFGS-B. As suggested by (Solina
and Bajcsy), we found that good initial estimates superquadric
parameters were necessary to result in well-fit superquadrics.

We estimated the translation of the superquadric as the mean
of the points and the shape parameters as ε1, ε2 = [1, 1],
which represents a sphere or ellipsoid. To estimate the rotation,
we used the method described in (Solina and Bajcsy) to
compute the inertial axes of the point cloud. Specifically, we
computed the matrix of central moments which is defined with
respect to the center of gravity (x̄, ȳ, z̄) (Solina and Bajcsy).
The inertial axes are then defined as the eigenvectors of the
matrix of central moments. The object coordinate system is
oriented such that the z axis lies along the longest side of
elongated objects or along the shorted side for flatter objects.
In other words, if ~e1, ~e2, ~e3 are the eigenvectors of M and
λ1 < λ2 < λ3 are the associated eigenvalues, then we assign
the z axis of the object coordinate system in the following
way: if |λ1−λ2| < |λ2−λ3|, then we set z = ~e3. Otherwise,
z = ~e1.

Once we estimate the object coordinate system with the
inertial axes, we use the Euler angles of this coordinate system
as the initial estimate for the optimization. Finally, the shape
parameters of the superquadric are estimated as the x, y, and
z parameters of the bounding box of the unrotated version of
the superquadric.

We also set constraints on the superquadric parameters
to improve how well the general shape of the superquadric
approximates that of the point cloud. We constrained ε1, ε2 ∈
[0.1, 1] because when ε1, ε2 < 0.1 the objective function
becomes unstable, and when ε1, ε2 > 2, concavities are intro-
duced in the superquadric shape. We also constrained 1, a2,
and a3 to be within 20% of the estimated a1, a2, and a3 values.

Fig. 2: Example of a superquadric fit to points on the surface
of a lightbulb object.

This prevented the issue of very large superquadrics being
used to approximate points simply because the points were
on the superquadric surface, while much of the surface was
not near the points. Finally, the Euler angles were naturally
constrained to be in [0, 2π) and no constraints were placed on
the translation.

2) Fitting Multiple Superquadrics: To best approximate and
segment an object, we wish to fit multiple superquadrics to the
object’s surface. Various methods of segmenting a point cloud
into multiple superquadrics have been presented in previous
works (Goldfeder et al.).

In this work, we use the split-merge approach to fitting mul-
tiple superquadric presented by Chevalier, Jaillet, and Baskurt
(Chevalier et al.). This approach consists of two primary
stages: the split stage and the merge stage. In the split stage,
one superquadric is first fit to the entire point cloud. The point
cloud is then split along the plane orthogonal to the primary
inertial axis of the superquadric, resulting in two new point
subsets. The fitting and splitting process is then recursively
applied to the point subsets until a specified terminating
condition, which could be a maximum recursion depth or
a maximum error of fit threshold. The split stage results in
a full binary tree of point subsets and their corresponding
superquadrics because each subset is split in half for each
iteration of the algorithm. We refer to number of leaves in
the split tree as n. In the merge stage, the point subsets are
merged two at a time from the bottom up to best describe the
affordances of the object. Specifically, we attempt to merge
one of the subsets S1 with each candidate subset S2 by
fitting a superquadric to the points in S1 ∪ S2. The set of
candidate subsets is the set of all other subsets resulting from
the split stage. Although this requires fitting a large number
of superquadrics, attempting merges with every other subset
ensures that segmentation result is independent of the order
in which the point subsets are considered. The two subsets
S1 and S∗

2 are merged if they result in the smallest error of
fit compared to the other subset pairs, and if the size of the
superquadric approximating the points S1∪S∗

2 is smaller than
the sum of the sizes of the superquadrics approximating S1

and S∗
2 . The result of the merge stage is a binary tree with n

leaves originating from the split tree and 2n−1 nodes. Higher

4

levels in the merge tree contain more coarse approximations
of the point cloud, while lower levels describe finer details and
smaller parts. The advantage of this approach is that it results
in a topologically meaningful representation of the different
parts of the object, and that it provides varying degrees of
segmentation. For a particular object, we only select the top
k merge stages, where k is determined empirically, to avoid
segmenting the object too finely into semantically meaningless
components.

C. Creating a Database of Parts

In order to transfer grasps to a new object, there must be
a database of objects with precomputed grasps that are to
be transferred. In fact, we require a database of object parts
because we aim to transfer grasps from one part to another
similar part. Given a set of objects, we segmented each of these
objects using the superquadric decomposition tree approach
and saved the resulting set of parts as a “flat” database of
parts.

D. Computing Grasps

We used a sampling-based approach to find valid grasps.
We first sampled points on the surface of the object to use as
vertices. We then used rejection sampling to repeatedly pick
two points from the set of vertices and throw out any that were
not antipodal or were not in force closure. After finding a valid
grasp we assigned it to a part of the object by the following
method: we computed which part each of the vertices was in
by finding the face that it contacted and determining which part
each face belonged to. If both vertices belonged to the same
part then the grasp was assigned to the part. We continued
sampling grasps until we reached a threshold for the number
of grasps assigned to each part. This procedure helped us avoid
generating grasps that were invalid on the object but valid
on the part because we sampled from grasps on the whole
object and then assigned them to the particular part they were
associated with.

To evaluate the grasps we created a quality metric based on
force closure. Instead of finding a binary measure of whether
a grasp is in force closure or not we generalize to a non-binary
measure in the range of 0-1, where higher grasp qualities are
associated with smaller angles between the normals of the two
vertices, indicating a more antipodal grasp.

E. Part Similarity

After fitting superquadrics to the query object to obtain its
component parts the central problem that remains is matching
one of the query parts to a part in the database so that a
grasp can be transferred from the database to the new part.
This requires a method to measure the similarity between
two superquadrics. Although the simplest method may seem
to be a direct comparison between the parameters of the su-
perquadrics, discussed earlier, this is not a fruitful comparison
because a linear change in parameters (especially the shape
parameters and) results in a nonlinear change in the shape of
the superquadric.

We implemented the method of comparison described in
(Chen et al.) : a Monte Carlo approximation of the differ-
ence in volume between two superquadrics. The procedure
described consists of removing the translation and rotation
parameters from the objects, sampling points uniformly in
a cube encompassing both of them, and then calculating the
fraction of points which fall inside of one superquadric and
outside of the other one, using the inside-out function. We
modified the procedure described in the paper slightly by
normalizing the scale parameters of the superquadrics: for each
superquadric we divided the scale parameters by their largest
value so that the scales of the superquadrics were roughly
comparable.

We conducted a first-order test of this similarity method by
constructing two artificial superquadrics and verifying that the
similarity metric showed they were becoming less similar as
we manually varied the parameters of each superquadric.

F. Grasp Transfer

Once the most similar superquadric to a given query part
is found, we must transfer the grasp from the database to the
new part. To do this we find the homogeneous transformation
between the position and rotation of the database superquadric
and the position and rotation of the query superquadric. We
then apply this transformation to the vertices of the grasp from
the database to find the coordinates of the grasp in the frame
of the new object. As it is likely that the new grasp is not
on the surface of the new object, we perform a ray-tracing
procedure to find the contact points of the new grasp: we draw
an imaginary line between the two vertices and calculate where
it intersects the surface of the part to find the new vertices for
the transferred grasp. If the line does not intersect the mesh
then it does not count as a successful transfer.

IV. RESULTS

A. Experimental Setup

For our experiments, we created a dataset of parts as
described in sec. III-C. To create this database, we first selected
a number of objects from the 3DNet dataset (Wohlkinger et al.)
and from the Thingiverse dataset referenced in (Danielczuk et
al.) that have similar affordances. For example, we selected
a screwdriver and a bottle due to their similar cylindrical
sections, as well as two rings and a mug due to their similar
circular cross sections. The objects included in the database
were: a lightbulb, a screwdriver, a mug, two different rings,
a bottle, and a door handle extender. For each grasp transfer
experiment, we selected one query object from the database
and segmented it with superquadrics. For each of the resulting
query parts, we found the most similar parts in the database,
ensuring the exclude parts from the query object itself. Finally,
we transferred the precomputed grasps from each of the
database parts to the associated similar query object part. For
the grasps, we assumed a parallel jaw gripper with two contact
points.

5

Object P(Valid Grasp) Transfer Grasp
Quality Mean

Valid Transfer
Grasp Quality

Mean

Precomputed Grasp
Quality Mean

bottle 0.70 0.603 0.858 0.963

door handle extender 0.24 0.213 0.875 0.961

lightbulb 0.47 0.419 0.899 0.976

mug 0.76 0.506 0.670 0.966

ring 1 0.18 0.133 0.756 0.985

ring 2 0.21 0.132 0.640 0.976

screwdriver 0.42 0.368 0.872 0.963

Table 1: Force closure quality of transferred grasps on various
objects. The right 4 columns indicate the proportion of valid
transferred grasps (i.e. on the surface of the object), the mean
quality of all of the transferred grasps, the mean quality of
the valid transferred grasps, and the mean quality of all of the
precomputed grasps.

Bottle Lightbulb

Fig. 3: Comparison of the force closure quality of valid
transferred grasps and precomputed grasps for the bottle and
lightbulb objects.

B. Object Segmentation

The object segmentation process via superquadric decom-
position trees worked well for most of the objects. The results
were particularly good for the lightbulb, the screwdriver, and
the bottle. The lightbulb was segmented into the glass bulb and
the metal base, and the screwdriver was segmented into the
handle, the shank, and the component joining the handle and
the shank, and the bottle was segmented into the body and the
neck. Not much more semantic segmentation was possible for
the rings since they can be easily approximated by cylinders,
so the segmentation process simply split them into horizontal
levels. Unfortunately, the segmentation of the mug and the
door handle extended did not yield semantically meaningfully
components, likely due to the fact that the superquadrics were
only split across their primary intertial axes in the split stage
rather than in more complex ways.

C. Quality of Transferred Grasps

To evaluate the quality of the transferred grasps, we use
the force closure grasp quality metric, which we also used
to precompute grasps on the parts in the database. Table 1
presents the quality of the transferred grasps for each object.
Many of the transferred grasps were invalid, meaning that if
they were to be executed by a robot with a parallel jaw gripper,
no contact would be made with the object. As can be seen from
the first column, the majority of transferred grasps were invalid
for most of the objects. We set the quality of these invalid
grasps to 0, which resulted in quite small mean grasp qualities

for each object. However, we observe that even though the
valid transferred grasps are not as good as the precomputed
grasps, they are of decent quality for most of the objects and
are likely to be successful.

Figure 3 shows the grasp quality distributions of the valid
transferred grasps and the precomputed grasps for the bottle
and the lightbulb objects. The transferred grasps have a wider
variety of qualities, ranging from about 0.6 to 1, while the
precomputed grasps are above 0.9 in quality. However, there is
a sufficient number of transferred grasps of comparable quality
to the precomputed grasps, so by executing the best transferred
grasps, a robot would likely succeed in grasping the query
object.

V. CONCLUSION

A. Summary

In summary, we attempted to determine the feasibility of
transfer grasping by parts as a method to cut down the
complexity of computing grasps on parts of new objects by
referencing grasps on parts of previously seen objects.

To do this we curated a database of objects with similar
parts, implemented a segmentation procedure based on su-
perquadric decomposition trees, segmented our objects using
this procedure, computed grasps on the parts, and then tried
to transfer the computed grasps to new objects whose su-
perquadrics were similar to those of the superquadrics in our
database.

The overall results from this process were underwhelming:
the transferred grasps were invalid (did not intersect the
surface of the new part) between 30 and 82 percent of the
time (depending on the query object), and the quality of the
transferred grasps was much lower than those produced by
direct computation. While we did not measure the exact time
difference between the transfer process and computing grasps
directly, we can qualitatively say that the transfer process was
also slower than computing grasps on the new part directly.

B. Challenges

We encountered several challenges in the process of fitting
superquadrics to point clouds. In the case of fitting one
superquadric, we found it was crucial to properly estimate
the initial parameters for L-BFGS-B to converge to a good
solution. These estimates became particularly important once
nonzero rotation and translation were introduced to the point
clouds. In addition, we found that it was necessary to constrain
the parameters for the fitting process to be successful for most
point clouds. As explained in (Solina and Bajcsy), constraining
the shape parameters ε1 and ε2 was particularly important
because the superquadric inside-outside function can become
numerically unstable outside of these bounds. We decided to
additionally constrain the scale parameters a1, a2, and a3
because without these constraints, we obtained superquadrics
whose surface approximated the points well but whose shape
did not match the expected underlying shape of the point
cloud. Constraining the scale parameters to be close to the
estimated scale parameters improved this issue. In addition,

6

speed was initially an issue when fitting superquadrics, partic-
ularly for point clouds that were not easily approximated by a
superquadric. We were able to increase the speed of the fitting
process by providing L-BFGS-B the Jacobian of the error
of fit with respect to the parameters rather than analytically
computing the Jacobian.

Moreover, in the merge stage of the fitting multiple su-
perquadrics process, it was unclear which neighbors of the
current point subset to consider for merging. Considering too
few would lead to poor segmentation results, while considering
too many was significantly more computationally expensive.
Ideally, one would intelligently select the neighbor point
subsets based on their topological relationship in the split tree,
their Euclidean distance, or some other metric.

Finally, we also had a difficult time finding an accurate
method to compare the superquadrics so that a similar part
could be reliably retrieved from the database. We curated
the dataset to include visually similar parts, but when we
implemented the similarity metric the parts that it returned
as being most similar did not fit with our visual intuitions.
For example, when we tested the lower spherical part of the
light bulb object, one of the most similar parts it returned was
a non-circular section of the door handle extender object. We
were not able to find much literature beyond (Chen et. al), and
our modifications to it (like normalizing the scale parameters)
did not seem to lead to a metric that matched all of our visual
intuition.

C. Future Work

With more time there are a number of research directions
that we would wish to explore, starting with having a larger
database of objects. We intentionally limited the number of
objects in the database because we wanted to be able to iterate
quickly on the segmentation and query stages of the procedure,
both of which would take much longer with a larger database.
While we attempted to choose objects that contained some
similar parts, it is possible that the size of the database in our
project was too small to contain sufficient objects such that
good transfer between similar parts was possible.

Beyond this change, we want to explore other ways of
computing similarity between the superquadrics, or going to
the underlying mesh segments and using them for comput-
ing similarity. Although the volume difference computation
method that we are currently using for computing superquadric
similarity works in that it produces lower similarity values for
superquadrics that we visually classify as not being similar, we
think there are more precise methods of finding similar parts to
a given part. This is partly because the same superquadric can
be used to represent a wide variety of underlying points clouds,
and so computing similarity between superquadrics may not
be the best way to represent if the two segments are actually
similar.

Continuing with this idea of replacing the use of su-
perquadrics in parts of our procedure, a third direction of
exploration that we are curious about is the transfer of the
grasp from the database part to the query part. Instead of
computing the transform between the two superquadrics, we

are curious to see the effect of using a procedure similar
to (Matl et. al), in which a registration process based on
Super4PCS (Mellado et. al) is used to align the actual point
clouds corresponding to the two parts. This would hopefully
eliminate the problem of the transferred grasp not contacting
the surface of the new object and lead to an increase in the
quality of the transferred grasp.

REFERENCES

[1] Biederman, Irving. ”Recognition-by-components: a theory of human
image understanding.” Psychological review 94.2 (1987): 115.

[2] Gaver, William W. ”Technology affordances.” Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 1991.

[3] Goldfeder, Corey, et al. ”Grasp planning via decomposition trees.” (2007):
4679-4684.

[4] Huebner, Kai, Steffen Ruthotto, and Danica Kragic. ”Minimum volume
bounding box decomposition for shape approximation in robot grasping.”
2008 IEEE International Conference on Robotics and Automation. IEEE,
2008.

[5] Miller, Andrew T., et al. ”Automatic grasp planning using shape primi-
tives.” (2003): 1824-1829.

[6] Kopicki, Marek, et al. ”Learning dexterous grasps that generalise to novel
objects by combining hand and contact models.” 2014 IEEE international
conference on robotics and automation (ICRA). IEEE, 2014.

[7] Aleotti, Jacopo, and Stefano Caselli. ”A 3D shape segmentation approach
for robot grasping by parts.” Robotics and Autonomous Systems 60.3
(2012): 358-366.

[8] Aleotti, Jacopo, and Stefano Caselli. ”Part-based robot grasp planning
from human demonstration.” 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011.

[9] Matl, Matthew, Jeff Mahler, and Ken Goldberg. ”An algorithm for
transferring parallel-jaw grasps between 3D mesh subsegments.” 2017
13th IEEE Conference on Automation Science and Engineering (CASE).
IEEE, 2017.

[10] Detry, Renaud, et al. ”Generalizing grasps across partly similar objects.”
2012 IEEE International Conference on Robotics and Automation. IEEE,
2012.

[11] Vahrenkamp, Nikolaus, et al. ”Part-based grasp planning for familiar
objects.” 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids). IEEE, 2016.

[12] Hillenbrand, Ulrich, and Maximo A. Roa. ”Transferring functional
grasps through contact warping and local replanning.” 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 2012.

[13] Solina, Franc, and Ruzena Bajcsy. ”Recovery of parametric models from
range images: The case for superquadrics with global deformations.”
IEEE transactions on pattern analysis and machine intelligence 12.2
(1990): 131-147.

[14] Mellado, Nicolas, Dror Aiger, and Niloy J. Mitra. ”Super 4pcs fast global
pointcloud registration via smart indexing.” Computer Graphics Forum.
Vol. 33. No. 5. 2014.

[15] Chen, L-H., Y-T. Liu, and H-Y. Liao. ”Similarity measure for su-
perquadrics.” IEE Proceedings-Vision, Image and Signal Processing 144.4
(1997): 237-243.

[16] Chevalier, Laurent, Fabrice Jaillet, and Atilla Baskurt. ”Segmentation
and superquadric modeling of 3D objects.” (2003).

[17] Walter Wohlkinger, Aitor Aldoma Buchaca, Radu Rusu, Markus Vincze.
3DNet: Large-Scale Object Class Recognition from CAD Models. In
IEEE International Conference on Robotics and Automation (ICRA),
2012.

[18] Danielczuk, Michael, et al. ”Segmenting unknown 3D objects from real
depth images using mask R-CNN trained on synthetic point clouds.” arXiv
preprint arXiv:1809.05825 (2018).

