Hierarchical Game-Theoretic Planning for Autonomous Vehicles
J.F. Fisac*, E. Bronstein*, E. Stefansson, D. Sadigh, S.S. Sastry, A.D. Dragan
International Conference on Robotics and Automation (ICRA), 2019
pdf
poster
The actions of an autonomous vehicle on the road affect and are affected by those of other drivers, whether overtaking, negotiating a merge, or avoiding an accident. This mutual dependence, best captured by dynamic game theory, creates a strong coupling between the vehicle's planning and its predictions of other drivers' behavior, and constitutes an open problem with direct implications on the safety and viability of autonomous driving technology. Unfortunately, dynamic games are too computationally demanding to meet the real-time constraints of autonomous driving in its continuous state and action space. In this paper, we introduce a novel game-theoretic trajectory planning algorithm for autonomous driving, that enables real-time performance by hierarchically decomposing the underlying dynamic game into a long-horizon" strategic" game with simplified dynamics and full information structure, and a short-horizon" tactical" game with full dynamics and a simplified information structure. The value of the strategic game is used to guide the tactical planning, implicitly extending the planning horizon, pushing the local trajectory optimization closer to global solutions, and, most importantly, quantitatively accounting for the autonomous vehicle and the human driver's ability and incentives to influence each other. In addition, our approach admits non-deterministic models of human decision-making, rather than relying on perfectly rational predictions. Our results showcase richer, safer, and more effective autonomous behavior in comparison to existing techniques.
An Efficient Reachability-Based Framework for Provably Safe Autonomous Navigation in Unknown Environments
A. Bajcsy*, S. Bansal*, E. Bronstein, V. Tolani, C.J. Tomlin
Conference on Decision and Control (CDC), 2019
pdf
Real-world autonomous vehicles often operate in a priori unknown environments. Since most of these systems are safety-critical, it is important to ensure they operate safely in the face of environment uncertainty, such as unseen obstacles. Current safety analysis tools enable autonomous systems to reason about safety given full information about the state of the environment a priori. However, these tools do not scale well to scenarios where the environment is being sensed in real time, such as during navigation tasks. In this work, we propose a novel, real-time safety analysis method based on Hamilton-Jacobi reachability that provides strong safety guarantees despite environment uncertainty. Our safety method is planner-agnostic and provides guarantees for a variety of mapping sensors. We demonstrate our approach in simulation and in hardware to provide safety guarantees around a state-of-the-art vision-based, learning-based planner.
Generating Highly Predictive Probabilistic Models Of Task Durations
I.K. Isukapati, C. Igoe, E. Bronstein, V. Parimi, S.F. Smith
IEEE Transactions on Intelligent Transportation Systems, March 2020
pdf
poster
In many applications, uncertainty in the durations of tasks complicates the development of plans and schedules. This has given rise to a range of resilient planning and scheduling techniques that in some way rely on probabilistic models of task durations. In this paper we consider the problem of using historical data to develop probabilistic task models for such planning and scheduling techniques. We describe a novel, Bayesian hierarchical approach for constructing task duration distributions from past data, and demonstrate its effectiveness in constructing predictive probabilistic distribution models. Unlike traditional statistical learning techniques, the proposed approach relies on minimal data, is inherently adaptive to time varying task duration distribution, and provides a rich description of confidence for decision making. These ideas are demonstrated using historical data provided by a local transit authority on bus dwell times at urban bus stops. Our results show that the task distributions generated by our approach yield significantly more accurate predictions than those generated by standard regression techniques.